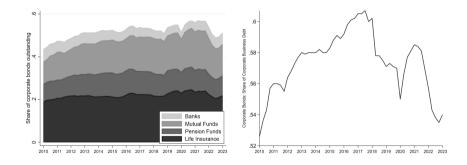
The Insurer Channel of Monetary Policy


Divya Kirti Soledad Martinez Peria Akshat V Singh IMF IMF IMF IMF FIP, Oxford

August 22, 2023

Disclaimer: The views expressed are those of the author(s) and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.

How do NBFIs shape transmission of monetary policy?

• NBFIs are important drivers of US credit supply

• Life insurers: Largest lenders, granular investment data

Insurers face tradeoff between asset duration and returns

- Insurers are short duration
 - Very long-term liabilities, scarce long-term corporate bonds
- Tradeoff between LT Treasuries and MT corporate bonds
- Use transaction-level data to establish tradeoff

Insurers transmit MP to credit risk premia through LT risk-free rates

- Insurer channel of MP:
 - MP $\Rightarrow \uparrow$ LT treasury yield $\Rightarrow \downarrow$ corp bond demand $\Rightarrow \uparrow$ credit risk premia
- Identify channel using insurance specific regulatory reform

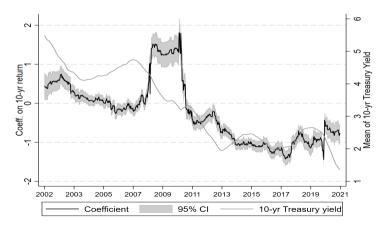
Selected literature

- 1. Life insurance investments: Becker Ivashina (2015), Ozdagli Wang (2019)
 - This paper: Cross asset class tradeoff between corporate bonds and LT treasuries
- 2. MP affects the entire yield curve: Hanson Stein (2015), Hanson Lucca Wright (2021), Domanski Sushko Shin (2017), Greenwood Vayanos (2014)
 - This paper: Relate to variations in corporate bond demand and credit risk premia
- Monetary policy and credit risk premia: Palazzo Yamarthy (2022), Anderson Cesa-Bianchi (2023), Dreschler Savov Schnabl (2018), Bekaert Hoerova Duca (2013), Chava Hsu (2019), Foley-Fisher Ramcharan Yu (2016)
 - This paper: Non-bank transmission to credit risk premia

Overview

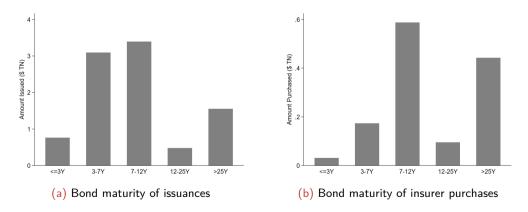
- 1. Data
- 2. Context: Insurers' duration mismatch
- 3. Tradeoff: Corporate bonds vs. long-term treasuries
- 4. MP transmission via life insurers
- 5. Conclusion

- Bond-level daily transactions and quarterly holdings for US insurers: Regulatory data via S&P Capital IQ Pro
- Corporate bond characteristics, bond ratings: Mergent FISD
- Treasury bond characteristics: TreasuryDirect
- Daily corporate bond yields, prices: TRACE
- Stock price information: CRSP
- Corporate balance sheet information: Compustat


Insurers' duration mismatch

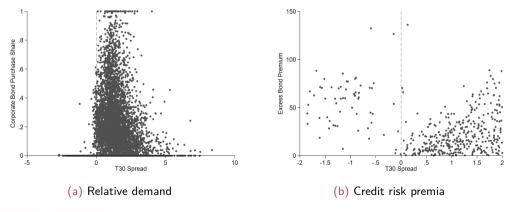
Life insurers are short duration

Two Factor Model Specification (Hartley Paulson Rosen 2016, Koijen Yogo 2023):


$$R_{i,t} = \alpha + \beta R_{m,t} + \gamma R_{10,t} + \epsilon_{i,t}$$

 $R_{i,t}$: return on insurance portfolio in week t, $R_{m,t}$: return on value-weighted stock market portfolio in week t, $R_{10,t}$: the return on 10 yr treasury bond in week t

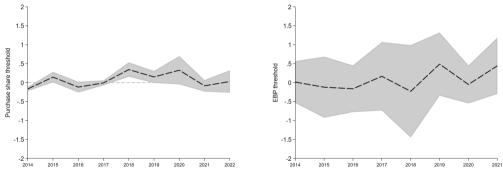
Insurers attempt to extend asset duration


• Sample of all corporate bonds issued from 2015-2023:

Tradeoff: Corporate bonds vs. long-term Treasuries

Relative demand sharply drops below LT Treasury yields

• Isolate demand by focusing on insurer purchase shares within individual bonds


• Employ a search technique (Hansen 2000, Card Mas Rothstein 2008):

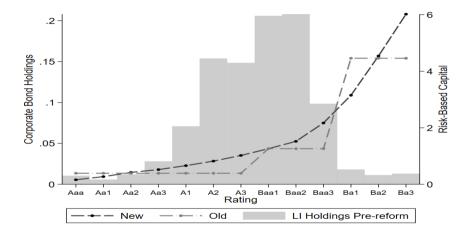
Purchase Share_{c,y} =
$$\alpha_y + \delta_y \mathbb{1}[s_y > s_y^*] + \epsilon_{c,y}$$

for 0 \leq s_y \leq S, where y: issuance year, c: CUSIP, s: T30 spread, s*: threshold spread

• We select s_{y}^{*} to maximize R^{2} , separately for each year

LT Treasury yield is consistently a floor

(a) T30 spread threshold for relative demand


(b) T30 spread threshold for credit risk premia

Insurer relative demand driven by LT Treasury yield comparison

	(1)	(2)	(3)	(4)
T30 Spread	1.32**	6.66***	2.49***	2.42***
	(0.53)	(0.73)	(0.64)	(0.59)
Duration			1.05***	1.11^{***}
			(0.11)	(0.10)
Distance to Default			3.67**	1.80
			(1.45)	(1.53)
Log(Offering Amount)				-7.20***
				(1.47)
$1{Callable}$				-1.04
				(2.26)
Observations	3932	3932	3932	3932
R^2	0.006	0.531	0.565	0.593
Issuer FE	no	yes	yes	yes
Time FE	no	yes	yes	yes
SE Clustering	Issue + Time			

Purchase Share_{c,m} = $\alpha_i + \delta_m + \beta_1 T30$ Spread_{c,m} + X_{c,m} + $e_{c,m}$

Use insurance-specific regulatory reform to identify tradeoff

 \uparrow RBC $\Rightarrow\downarrow$ attractiveness of corporate bonds $\Rightarrow\uparrow$ binding tradeoff

Tradeoff more binding post insurance regulatory reform

Purchase Share_c =
$$\alpha_i + \delta_q + \sum_{q=2015Q1}^{2023Q1} \beta_q \times (\Delta \text{RBC}_r \times \text{T30 Spread}_c \times 1_q) + X_{c,t} + \epsilon_c$$

LT Treasury yield shapes demand at asset-class level

Purchase Share_{r,m} = $\delta_m + \beta \times (\Delta \text{RBC}_r \times \text{T30 Yield}_m \times \mathbb{1}\{\text{Post}\}) + X_{r,m} + \epsilon_{r,m}$

	(1)	(2)
T30 yield	1.32*	
	(0.74)	
$1{\rm {Post}} imes T30$ yield	-2.76	
	(1.71)	
$\Delta \mathrm{RBC}_r imes$ T30 yield	0.13	0.18
	(0.12)	(0.10)
$1{\text{Post}} \times \Delta \text{RBC}_r \times T30$ yield	-0.77**	-0.98***
	(0.28)	(0.29)
Observations	1348	1348
R^2	0.018	0.119
Time FE	no	yes
SE Clustering	Rating	+ Time

Monetary policy transmission via life insurers

Role of insurers in MP transmission

- Identifying MP induced changes in LT treasury yields:
 - Use changes in T30 yields on FOMC announcement days
 - To ensure MP component > Fed information effect: only include days when bond yields and S&P 500 move in opposite directions (Jarociński Karadi 2021)
- Identifying role of insurers using insurer regulatory reform:
 - Differential impact of MP-induced changes in LT rates to credit risk premia

Insurers transmit MP-induced changes in T30 yield to risk premia

 $\Delta \text{EBP}_{c,m} = \alpha_c + \delta_m + \beta \times (\Delta \text{RBC}_r \times \Delta \text{T30 Yield}_{\text{MP}} \times \mathbb{1}\{\text{Post}\}) + X_{c,m} + \epsilon_{c,m}$

	(1)	(2)	(3)
$\Delta T30 \text{ Yield}_{MP}$	15.56		
	(18.31)		
$1{\text{Post}} \times \Delta T30 \text{ Yield}_{\text{MP}}$	-125.99***		
	(34.04)		
$\Delta \text{RBC}_r \times \Delta \text{T30 Yield}_{\text{MP}}$	-2.25	-1.94	-2.20*
	(1.55)	(1.53)	(1.28)
$1{\text{Post}} \times \Delta \text{RBC}_r \times \Delta \text{T30 Yield}_{\text{MP}}$	22.23***	15.12^{**}	14.74**
	(6.41)	(6.17)	(4.89)
Observations	365703	365703	365703
R^2	0.103	0.395	0.412
Issue FE	no	no	yes
Time FE	no	yes	yes
Aggregate Controls	yes	no	no
SE Clustering	lss	sue + Time	3

Conclusion

Insurer asset allocation tradeoff shapes MP transmission

- Tradeoff between long-term treasuries and medium-term corporate bonds
- New insurer channel of monetary policy
 - Transmit MP-induced changes in LT risk-free rates to credit risk premia
 - Impact in cross section of bonds quantitatively relevant
- Policy implications: Role of NBFIs in MP transmission
- Next steps: Theory, cross-section of insurers, international spillovers

Appendix

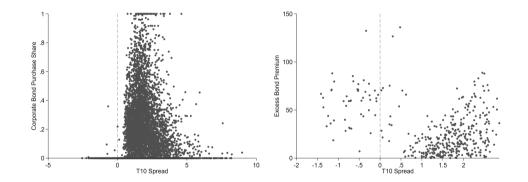
Transmission of short rates to long rates

- Hanson Lucca Wright 2021 propose three channels:
 - 1. Mortgage refinancing: Negative shocks to short-term rates trigger mortgage refinancing waves that lead to temporary reductions in the effective gross supply of long-term bonds.
 - 2. Investor extrapolation: Some bond investors make biased forecasts of future interest rates. Positive shocks to short rates lead extrapolative investors to overestimate the future path of short rates and demand fewer long-term bonds.
 - 3. Reach for yield: Negative shocks to short rates boost the demand for long-term bonds from "yield-seeking investors".

Return

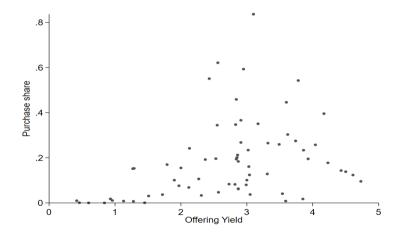
Excess Bond Premium

- Derived as in Gilchrist Zakrajšek (2012)
- Component of credit spreads not directly attributable to expected default risk

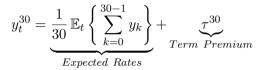

$$\ln S_{i,t}[k] = \beta DTD_{i,t} + \gamma' Z_{i,t}[k] + \epsilon_{i,t}[k]$$

$$\hat{S}_{i,t}[k] = exp\left[\hat{\beta}DTD_{i,t} + \hat{\gamma}'Z_{i,t}[k] + \frac{\hat{\sigma}^2}{2}\right]$$

$$EBP_{i,t}[k] = S_{i,t}[k] - \hat{S}_{i,t}[k]$$



Relative demand and 10 Year Treasury yields


Return

Relative demand of LT Treasury bonds increases with LT yields

Tradeoff

• 30 year Treasury bond:

• 10 year Corporate bond:

$$y_c^{10} = \underbrace{\frac{1}{10} \mathbb{E}_t \left\{ \sum_{k=0}^{10-1} y_k \right\}}_{Expected \ Rates} + \underbrace{\frac{\tau^{10}}{Term \ Premium}}_{Term \ Premium} + \underbrace{\frac{\delta_c}{Credit \ Risk \ Premium}}_{Credit \ Risk \ Premium}$$

• Capital-adjusted T30 spread:

$$\{y_c^{10} - y_t^{30}\}_{Cap. Adj} = \underbrace{\delta_c}_{Credit \ Risk \ Premium} - \underbrace{\tau^{10,30}}_{Term \ Premium} - \underbrace{\eta_c}_{RBC}$$

Differential effects of LT Treasury Yield on risk premia

 $\Delta \text{EBP}_{c,m} = \alpha_c + \delta_m + \beta \times (\Delta \text{RBC}_{\text{rat}} \times \Delta \text{T30 Yield}_m \times \mathbb{1}\{\text{Post}\}) + X_{c,m} + \epsilon_{c,m}$

	(1)	(2)	(3)
$\Delta T30$ Yield	-9.53***		
	(3.34)		
$1{\text{Post}} \times \Delta T30 \text{ Yield}$	15.62***		
	(4.15)		
$\Delta RBC_{rat} \times \Delta T30$ Yield	-0.46**	-0.65**	-0.64***
	(0.22)	(0.25)	(0.24)
$1{\text{Post}} \times \Delta \text{RBC}_{\text{rat}} \times \Delta \text{T30 Yield}$	0.77**	0.77**	0.68**
	(0.34)	(0.33)	(0.31)
Observations	547262	547262	547262
R^2	0.100	0.363	0.376
CUSIP FE	no	no	yes
Time FE	no	yes	yes
Aggregate Controls	yes	no	no
66 6	5		

MP-induced changes in T30 yield increase risk premia

	(1)	(2)	(3)	(4)
$\Delta T30$ Yield _{MP}	5.55 (16.39)	4.04 (17.10)		
$\Delta T30$ Yield			-10.27* (6.01)	-8.33* (4.59)
Observations	372177	372177	372177	372177
R^2	0.024	0.082	0.054	0.100
CUSIP FE	yes	yes	yes	yes
Aggregate Controls	no	yes	no	yes

 $\Delta \text{EBP}_{c,m} = \alpha_c + \beta \times \Delta \text{T30 Yield}_{\text{MP}} + X_m + \epsilon_{c,m}$

